

Configuring a Red Hat Linux System

For Secure Websites

(HTTPS)

Graham Leach

Managing Partner

TIG – The Imperators Group, Inc.

© 2002 TIG

Table Of Contents

Why Do This At All? ..3
SSL Is A Good Thing..3
SSL Enables Good Security...3
A General Description Of How WWW Services Works ...3
The Problem With Default Web Browser Behavior..4
The Redirection Workaround ...5

How This Module Is Structured...6
SECTION 0: Preparing For an HTTPS Website...7

How To Secure An Additional IP Address ...7
How To Change The DNS Data Files ..8
How To Tell DNS To Reload Its Data Files..9
How To Test The New IP Address...10
How To Assign The New IP Address ...11
Testing the Newly Assigned IP Address ..12

SECTION 1: Creating A Regular Website ..13
How To Configure The Web Server ...13
The httpd.conf Entry, Annotated ..14
Creating The Sample index.html File ...15
Restarting The Web Server..16
Testing the Web Server With telnet ...18
Testing the Web Server With Lynx...19
How to Detect An Insecure Web Session ..20
How to Detect A Secure Web Session...21

SECTION 2: Creating an SSL Website ..22
Creating the secure.dd-industries.com DNS Entry ..22
Activating and Testing secure.dd-industries.com TCP/IP Connectivity.................................23
Testing secure.dd-industries.com HTTP Connectivity...24
Testing secure.dd-industries.com HTTPS Connectivity ..25
Create the Private Key and Certificate Request ..28
How to Generate A Certificate Signing Request File..29
How To Remove the Passphrase From The Private Key..30
How To Create The X.509 Certificate ..31
Where To Put The X.509 Certificates And Server Key..32
What The Inside Of A Decoded Certificate Looks Like..34
Enabling The HTTPS Web Server ...35
Testing the HTTPS Server ...37

SECTION 3: Redirecting HTTP Traffic To The Secure Website..41
Rename index.html placeholder.html...42

Acknowledgements...51

Why Do This At All?

Some people would say that getting a secure web server going is not a trivial task.

It involves the installation and integration of multiple technologies (Apache and OpenSSL), the
acquisition (or generation) of a X.509 server certificate, and intimate knowledge of the underlying
protocols (and tools) to get the solution going.

SSL Is A Good Thing
So why bother? Here are two compelling facts that support the idea that secure websites are a
good idea.

1) SSL raises the security of your website in general.
2) SSL is at the heart of eCommerce transactions.

In other words, providing SSL may enhance your reputation and certainly helps to make your
customers feel more secure when browsing. They may even become comfortable enough to
overcome the psychological barrier many people have when it comes to conducting online
financial transactions.

SSL Enables Good Security
First of all, understand that the vast majority of Internet traffic is not secure by any means. Traffic
(meaning TCP/IP packets) flow on quasi-public digital highways and can be sniffed, diverted and
otherwise manipulated in transit by malevolent forces.

This applies equally to the BIG 3 Internet applications, remote access, email and web.

Technology Port Tool
Remote Access 21 TELNET
email – send 25 SMTP
email - read 110 POP
World Wide Web 80 HTTP

All of these technologies pass their information (including supplied credentials) in the clear. This
means the only thing preventing someone from stealing your credentials is either indifference or
ignorance – neither of which can be considered a worthwhile security policy.

A General Description Of How WWW Services Works
This particular module focuses on how to secure the third member of the BIG 3, the World Wide
Web.

Here’s what happens in a typical WWW session:

1) A web browser forms a connection with an Internet entity on port 80.
2) A web server waiting on port 80 responds by indicating it is ready for instructions.
3) The web browser issues a request to the web server, usually GET //index.html.
4) The web server either returns the index.html file or an error message.
5) The web server breaks the connection and goes back to waiting for connections.

Bear in mind that this is all done using the HTTP protocol.

The Problem With Default Web Browser Behavior
Everyone in the world who is used to surfing the web is accustomed to using the HTTP protocol
implicitly. This functionality has progressively been programmed into our web browsers in an
effort to make using the WWW simple, easy and fun.

Consider the following:

In the above example,

In the URL supplied by yours truly, there’s no mention of protocol, only a Fully Qualified Domain
Name (FQDN), which will hopefully be resolved to an IP address by my DNS server.

While this URL is technically incomplete, the connection is still going to be formed without any
complaint by the web browser. I click on “OK” and here is what the browser returns to me:

Consider the following:

In the above example,

So, if I didn’t supply enough information, how did it still work?

The web browser supplied additional information on a “best guess” basis - the “best guess” being
that I was interested in connecting to www.dd-industries.com with the Hyper Text Transfer
Protocol, HTTP, on port 80 of that computer.

Browsers Do Not Default To HTTPS
This output in the previous example is perfectly acceptable to those surfers only ever accessing
information with HTTP and casually browsing. Unfortunately, surfers get really anxious about
exchanging private information (such as credit card numbers) using HTTP because they are
aware of many circumstances of Internet-oriented credit card fraud.

These days, surfers look for ”that little lock” when conducting financially sensitive transactions.
What many of them don’t know (and don’t care about) is that they are no longer using HTTP
when “that little lock” is visible on the bottom status bar of the web browser. At that point, they’re
using HTTPS, a completely different protocol.

As we’ve already seen, most web browsers default to the HTTP protocol when the protocol is not
explicitly stated. The HTTP protocol uses port 80. Websites providing secure web services via
HTTPS use port 443.

So, if you’re interested in running an eCommerce site, HTTP is only interesting if it somehow
leads the customer to HTTPS. But, and this is a big but, customers unaccustomed to specifying
the protocol as part of the URL demand HTTPS when their web browsers are defaulting to HTTP!

The Redirection Workaround
The answer to getting around this problem is to create at least two websites.

The first website is available via HTTP on port 80 and it has some very basic functionality

1) It checks the browser capabilities.
2) It may issue a warning if the browser security is weak (key length is too short).
3) It may issue a warning if the browser is incapable of supporting HTTPS.
4) If everything looks OK, it transparently redirect the web browser to the secure website.

http://www.ddindustries.com

How This Module Is Structured
This module will show how to:

• Prepare for an HTTPS website
• Create a HTTP website & making sure it works
• Create an HTTPS website & making sure it works
• Redirecting traffic from the HTTP website to the HTTPS website

SECTION 0: Preparing For an HTTPS Website

How To Secure An Additional IP Address
This particular system starts out with the IP address 192.168.0.10 and has a functioning web
server. These are a direct result of a “stock” Red Hat install.

Consider the following:

In the above example,

Because this process will eventually result in an SSL enabled server, some additional steps at the
outset must be performed that wouldn’t necessarily be required for a regular website.

One of those steps is the activation of an additional IP address. Because we are on a private
network under our own administration, securing an IP address is trivial and the secure website
will be installed on the IP address 192.168.0.11.

In the case of an Internet entity, your ISP will have to be contacted for a valid IP address.

They may also be required to perform some DNS work for you.

How To Change The DNS Data Files
Part of the challenge of making HTTPS work properly involves securing an additional IP address
for that service. This is because of how SSL works. It operates at the transport level, below
name services. This means that every SSL server requires a unique IP address.

Consider the following:

In the above example a line has been added to the file that holds the DNS record for this domain,
dd-industries.com. The line details the name of the new server, catalogs, plus the IP address
that the name is associated with, 192.168.0.11.

The next step is to reload the DNS database:

How To Tell DNS To Reload Its Data Files
There are a couple of ways to reload the DNS database. One involves using the startup scripts,
another killing and restarting the server directly.

There is also a command suite available to tell the named program what to do. One of the
commands tells it to reload its databases. The command is ndc reload.

Consider the following:

In the above example the ndc reload command was used to tell the named DNS server to reload
its data files.

How To Test The New IP Address
Just because an IP address has been secured and activated in DNS does not a webserver make!

Consider the following:

In the above example the ping command was used to test both DNS and IP. While the Fully
Qualified Domain Name (FQDN) catalogs.dd-industries.com resolved properly to the IP
address 192.168.0.11, there was no answer to the ping because no machine has yet had the IP
address

How To Assign The New IP Address
Now that an IP address has been secured and activated in DNS, it is now necessary to link that
IP address to the physical computer.

Consider the following:

In the above example,

Testing the Newly Assigned IP Address

Consider the following:

In the above example,

The ping resolves and gets an answer!

SECTION 1: Creating A Regular Website

How To Configure The Web Server
To create a regular website the httpd.conf file for your Linux box must be edited and an entry
added.

Consider the following:

In the above example the httpd.conf file has been edited and a website entry has been added.

The httpd.conf Entry, Annotated

#--
catalogs.dd-industries.com - BEGIN
#--

A simple HTTP website
#--

This is a comment. All characters after the hash mark, #, are ignored by the web server.

<VirtualHost 192.168.0.11>

This ties the web server to a particular IP address. Because no port
is specified, the default port (80) is assumed to be the port that the
server is being instructed to listen to.

 ServerName catalogs.dd-industries.com

This tells the web server the FQDN that corresponds to the IP address
supplied above.

 ServerAdmin info@dd-industries.com

This tells the web server who to contact if there are problems

 DocumentRoot /home/webs/catalogs.dd-industries.com

This tells the web server where to locate its files, where the website
for this entry physically resides.

 ErrorLog /home/webs/catalogs.dd-industries.com/logs/error

Tells the web server which file to store error messages.

 CustomLog /home/webs/catalogs.dd-industries.com/logs/access

Tells the web server which file to store access information and other
information not related to errors.

</VirtualHost>

This terminates the entry, telling the web server that no further information is available on this
website.

Testing the Web Server

Testing this installation is simple.

• Create a sample index.html on the target server
• Restart the web server so it reads in the new entry
• Test the web server with telnet
• Test the web server with lynx

Creating The Sample index.html File

Consider the following:

In the above example the – character was used to redirect standard input to the file index.html.
The lines were typed in directly and then CTRL-D was used to tell Linux that the file was
complete. CTRL-D is the file termination character in Unix.

Restarting The Web Server
Use the script to restart the server:

Consider the following:

In the above example,

You can also accomplish this with the apachectl command:

Consider the following:

In the above example,

Testing the Web Server With telnet
There is a way to test the web server from the command line using the telnet tool.

Consider the following:

In the above example, a connection to a web server was established on port 80 using the telnet
command. Once the connection was established, the GET command was used to ask for the file
//index.html, which was immediately returned by the web server.

Note that once index.html was delivered, the web server terminated the connection. In other
words, the connection was initiated by the client, but ended by the server.

Testing the Web Server With Lynx
Consider the following:

In the above example the lynx web browser was used to verify that the website was working.

How to Detect An Insecure Web Session

Consider the following:

In the above example, Microsoft Internet Explorer was used to verify that the web server
configured for catalogs.dd-industries.com responded to client requests. As you can see from
the lack of a “little lock” on the bottom status bar, this is an insecure connection based on HTTP.

How to Detect A Secure Web Session
Here is a preview of what this module is trying to accomplish:

Consider the following:

In the above example, Microsoft Internet Explorer was used to verify that the web server
configured for catalogs.dd-industries.com responded to client requests. As you can see from
the “little lock” on the bottom status bar, this is a secure connection based on HTTPS (even
though the URL in the Address box may lead you to conclude otherwise).

SECTION 2: Creating an SSL Website
Now that a basic web site has been enabled and established the SSL website must be
configured.

SSL is a complicated topic that revolves around certificates, particularly X.509 certificates. For
this example to work, a certificate must be obtained or generated for this server.

First, we want a destination for all of our secure traffic – called secure.dd-industries.com. To
make that destination a reality we have to enter it in a DNS server.

Creating the secure.dd-industries.com DNS Entry
Add the entry to the DNS database

Consider the following:

In the above example,

Activating and Testing secure.dd-industries.com TCP/IP Connectivity
Restart the name server and test name resolution with ping.

Consider the following:

In the above example,

Testing secure.dd-industries.com HTTP Connectivity
Confirm that secure.dd-industries.com responds to normal HTTP requests:

Consider the following:

In the above example,

Testing secure.dd-industries.com HTTPS Connectivity
Without any further configuration this should fail:

Consider the following:

In the above example,

Time to test the connection directly with telnet.

Consider the following:

In the above example,

The server is not yet available

Enabling SSL

OpenSSL

Two things are needed – a certificate and a key.

X.509 Certificate Generation

This entire section needs to be written!!!!!!!!!!!!
This entire section needs to be written!!!!!!!!!!!!
This entire section needs to be written!!!!!!!!!!!!
This entire section needs to be written!!!!!!!!!!!!
This entire section needs to be written!!!!!!!!!!!!
This entire section needs to be written!!!!!!!!!!!!
This entire section needs to be written!!!!!!!!!!!!
This entire section needs to be written!!!!!!!!!!!!
This entire section needs to be written!!!!!!!!!!!!
This entire section needs to be written!!!!!!!!!!!!
This entire section needs to be written!!!!!!!!!!!!

Create the Private Key and Certificate Request
First of all, have a care and generate your keys in a safe place! I recommend that you use the
/root directory

Consider the following:

In the above example the cd and pwd commands were used to navigate to the
/root/passwords.and.keys directory.

How to Generate A Certificate Signing Request File
The first step in obtaining an X.509 certificate is to create a file that contains the information
necessary to generate the certificate. The csr file contains information about the organization
requesting the certificate.

Consider the following:

In the above example the secure.dd-industries.com.csr file was generated with the openssl
command. This file contains the information required to create the X.509 server certificate.

How To Remove the Passphrase From The Private Key
In some instances it may not be desireable to have a passphrase on the private key. In this case,
the passphrase would be requested each time the web server process is re-started. This can
cause problems when your web server is physically remote.

Many people remove the passphrase from the private key – remember, this can open a big
security issue that must then be managed. Choose your strategy appropriately.

Consider the following:

In the above example the passphrase was stripped from the file privkey.pem to derive a
passphrase-free key file, secure.dd-industries.com.key.

How To Create The X.509 Certificate
Now that the csr has been prepared and a passphrase-free private key is available, it is time to
perform the final step in terms of creating the files necessary to support X.509 certificates.

Consider the following:

In the above example the openssl command was used to create an X.509 certificate contained in
the file secure.dd-industries.com.crt.

Where To Put The X.509 Certificates And Server Key
Move the certificate and key to the appropriate places

Consider the following:

In the above example,

OK, now the certificate and the key are in the appropriate places.

Time to do some investigating!

What The Inside Of An X.509 Certificate Looks Like

Consider the following:

In the above example,

What The Inside Of A Decoded Certificate Looks Like

Consider the following:

In the above example the openssl x509 command was used to display the decrypted contents of
the secure.dd-industries.com.crt file.

Enabling The HTTPS Web Server
The Edit the httpd.conf file to include the IP address and name secure.dd-industries.com.

Consider the following:

In the above example,

Restart httpd to enable the secure functionality

Consider the following:

In the above example,

Testing the HTTPS Server
Test if secure.dd-industries.com responds to HTTPS requests

Consider the following:

In the above example,

Now the site is available and the web browser and server begin to communicate

Consider the following:

In the above example,

Consider the following:

In the above example,

Consider the following:

In the above example,

Consider the following:

In the above example,

SECTION 3: Redirecting HTTP Traffic To The Secure Website

The easiest way to do this is via PHP. Just replace index.html with a PHP page called
index.php. When the web server fails to find index.html it will instead load index.php, which
contains the redirection instructions necessary to enter the SSL website.

Consider the following:

In the above example the index.php file was created using standard input redirection.

How To Enable HTTPS Redirection

Consider the following:

In the above example,

This makes the web server load index.php instead – effecting the redirection.

How To Test For Correct Redirection

Consider the following:

In the above example, the browser is being directed to load secure.dd-
industries.com/index.php.

Consider the following:

In the above example,

What This Document Enables
Consider the following:

In the above example the web session is now being conducted via HTTPS – indicated in two
ways:

• The URL includes the keyword https.
• The lock on the bottom status bar is closed.

Section 4: The Acid Test - Doing It For Real

What The Purpose Of This Document Is

Consider the following:

In the above example,

Looks like a secure site to me

14/04/2002

Acknowledgements

http://www.linuxdoc.org/HOWTO/SSL-RedHat-HOWTO-4.html

http://www.apache-ssl.org/#Digital_Certificates

http://www.phpbuilder.com/forum/read.php3?num=2&id=122994&thread=122991

http://www-zeuthen.desy.de/computing/projects/security/SSL/ssl_commands.html

http://www.linuxdoc.org/HOWTO/SSLRedHatHOWTO4.html
http://www.phpbuilder.com/forum/read.php3?num=2&id=122994&thread=122991

